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The Ising model on a SAW 

Marc Aertsens and Carlo Vanderzande 
Limburgs Univenitair Centrum, Universitaire Campus, 3590 Diepenbeek, Belgium 

Received 5 June 1991. in final farm I S  Onober 1991 

Abstract. Using a renormalization group calculation, we show that the most probable value 
of the static correlation function of the king model on a SAW decays as a stretched 
exponential (with an exponent equal to the dimension D of the SAW). We prove that the 
thermal exponent uT equals D-‘. On the basis of extensive Monte Carlo simulations we 
conclude that the spin-spin autocarrelation fundion also decays as a stretched exponential. 
We find evidence for a breakdown of dynamical scaling. 

1. Introduction 

In this paper we study the king model on a 2~ self-avoiding walk (SAW). This could, 
for example, be a model of a magnetic polymer. In particular we are interested in the 
regime in which the typical magnetic relaxation time T,,, is much smaller than the 
typical relaxation time of the polymer T~ as given by, for example, Rouse dynamics 
(Rouse 1953, de Gennes 1979). In this regime the SAW can be considered as quenched. 
We would like to remark that the opposite limit where T, >> T~ is also of interest as it 
is of importance for the so-called ‘protein folding problem’ (see e.g. Rammal et al 
1986). Our main interest in the problem, will, however, be mainly from the point of 
view of studying the statics and dynamics of an Ising model on a fractal (Mandelbrot 
1983, Stinchcombe 1985). Indeed, in recent years it has become clear that the dynamics 
of an king model on a fractal, such as the incipient infinite cluster at the percolation 
threshold, can be highly non-trivial\ (Harris and Stinchcombe 1986, Henley 1985, Jain 
1986a, b, 1988). In fact one has observed such phenomena as breakdown of dynamical 
scaling, stretched exponential relaxation,. . . in this model. We wish to study whether 
such behaviour can also be found for the king model on a SAW, which is also a fractal. 

A proper study of the dynamical aspects also requires a further understanding of 
the equilibrium properties of the model. So far we only know of some real space 
renormalization group (RG) approach to this problem (Chakrabarti and Bhattacharya 
1985). One generally agrees that the Ising model on a SAW is not ordered (Stinchcombe 
1983, Chakrabarti et ol 1985), but correlation functions or the thermal exponent U, 
near zero temperature are only poorly known. 

In the present paper we present several new results on both the statics and the 
dynamics of the problem. Our results are based on analytical reasoning and on an 
extensive Monte Carlo study of the model. 

The paper is organized as follows. In section 2 we discuss the behaviour of the 
static correlation function, while in section 3 we calculate the static thermal exponent. 
In section 4 we discuss the dynamics of the Ising model on a fractal, which in section 
5 is examined numerically for the special case of the SAW. Finally, in section 6 we 
present a further discussion of our results. 

0305-4470/92/040735 + 13904.50 @ 1992 IOP Publishing Ltd 735 
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2. Stretched exponential decay of the correlation function 

Consider an N-step SAW (I on, for example, a ZD square lattice. On each site i visited 
by the SAW an Ising variable si is present. The reduced Hamiltonian of the model is 
then given by 

M Aerrsens and C Vanderzande 

H, = K sisj (2.1) 
i , j t o  

where i and j are nearest neighbours. In this way we have also included interactions 
among Ising spins which are on nearest neighbour sites but which are not visited by 
consecutive steps of the SAW. We will call such pairs of nearest neighbours sites bridges. 
Of course, without these bridges the Ising model on a SAW would just be equivalent 
to the ID  king model, due to the fact that a SAW does not branch (figure 1). 

22 23 24 

Figure 1. The full lines show a SAW of length N = 25. The broken lines are the bridges on 
this SAW. 

The 2 0  SAW is a fractal whose fractal dimension D is 4/3. This means that the 
mean Euclidean distance R between step i and step i + M (with M >> 1) on the SAW 

behaves as 

R = A'M'/D (2.2) 

where A'is a constant. This relation which is usually only considered for the end-to-end 
distance should also be valid here due to the self-similarity of a fractal. 

It is now generally agreed that an Ising model on a fractal with D < 2 will only 
order at zero temperature T =  0 (Stinchcombe 1983, Chakrabarti et all985). Therefore 
thC two-point spin rorr.!.tion filnrtinn G; on a S h W  a Is defined a s  

'Tr(sjsj e") 
Tr(e "-) 

G i  = (sisj)* = 

We will determine an average value of G; for large I i  -j l .  
We therefore extend to the SAW arguments which allow us to determine the form 

of this correlation function and which were first given by Gefen et al (1983) for the 
case of deterministic fractals. Fist remark that for a SAW, G: is a random variable. 
The correlation function and thus the correlation length may then depend on the 
moment of G; which we choose to calculate (Derrida and Hilhorst 1981). For a SAW 

without bridges we can easily calculate the most probable value of G; .  Indeed the 
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Ising model in such a case is just the ID  king model. For a particular SAW a we thus 
obtain 

G; = e x p ( - ~ e ( i , j ) / t d  (2.4) 

is the correlation where Nm( i , j )  is the distance between i and j along the SAW a and 
length for the ID lsing model which at low temperatues behaves as (Ising 1925) 

5, = to e2"TK 

with to= 1/2 and the thermal exponent uT= 1.  Now using (2.2) to perform an average 
over SAW we get 

where 7 denotes the average over all SAW configurations and A = A'-D. When G, is 
the product of a large number of identically distributed independent random variables 
as is often (exactly or approximately) the case in random systems, e x p ( q )  gives 
the most probable (mp) value of G, (Derrida and Hilhorst 1981). In the present case, 
the distribution of G, is trivially related to the distribution P ' ( N , )  of Nu. From the 
known properties of this distribution (see e.g. de Gennes 1979) we can conclude that 
fig differs very little from the value where I"( N u )  reaches its maximum. For both these 
reasons we will refer to exp(ln G,) as the most probable value of G,. Thus 

~ 

D 
Gyp= exp- (x) li-jl (2.6) 

where the most probable value of the correlation length gmmP is given by 

5 "lP =(A-'5,) ' 'D=(A-'5,) ' 'D exp(2KID). (2.7) 

We thus find that in the case of the SAW without bridges the most probable value of 
the spin-spin autocorrelation function decays as a stretched exponential. The thermal 
exponent in this case is 1 / 0 = 3 / 4  and thus equals the v-exponent of the SAW itself. 
As pointed out by Derrida and Hilhorst (1981), GTP corresponds to the correlation 
function found in Monte Carlo simulations. 

What is the effect of including the bridges? It was shown by Gefen er a[ (1983) 
that for a deterministic non-branching fractal the value of v, stays at 1/D. To obtain 
this result they performed a decimation-like procedure which mapped the king model 
on a fractal with bridges on to an Ising model with renormalized couplings on a fractal 
without bridges. 

Here we will give a similar argument which will show that (2.6) and U,= 1/D will 
remain valid with bridges. Let us first define a link to be a step of the SAW which when 
cut breaks the set of bonds of the SAW (combined with the bridges) in two parts. We 
will denote the number of links in a SAW a by L,. This number was recently studied 
numerically by Seno and Stella (1989) who found the average number of 
links 1: 

L= tN(1 +o(N-A)). (2.8) 

We will proceed to show that any N-step SAW a can be mapped through a decimation- 
like procedure on to a SAW of L, steps, where, however, the king couplings have been 
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renormalized. Our procedure goes as follows. We move along the SAW until we find 
a bond that is not a link; let this be the bond k + k + l .  Let the next bond which is 
again a link be l + l + 1 (in the example of figure 1 k = 2 and I = 14). We will call the 
set of spins s * + ~ ,  . . . ,  SI-^ and the bonds involving at least one of them a blob. 
Consequently we trace out all the spins inside the blob. This can be done as follows: 

exp(K’sksl+C’)= 1 . . . 1 exp(H,(sk+ ,,.. .,s!-,)) (2.9) 

where C’ is a constant and H,(s ,+ , ,  . . . , s ~ - ~ )  includes all interactions from (2.1) 
involving the set of spins s ~ + ~ ,  . . . , In general K’ will be a complicated function 
of K which depends on the structure of the SAW between sites k and I .  Of course, in 
practice it may be very difficult to calculate K’. We now proceed along the SAW until 
we encounter the next blob. The spins in this blob are traced out, etc. .  . . When we 
have reached the end of the SAW, we will have obtained a SAW with only links, or 
equivalently just a I D  chain. The interactions between king spins on this chain will 
be K for all bonds which were links in the original SAW, but will take on a different 
value, depending on the original structure of the SAW, on the other bonds. Figure 2 
shows the result of applying our decimation procedure to the SAW of figure 1. 
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sk*,=*, 1,.,=*1 

K K, K K K K, K K K 

1 2 14 15 16 17 22 23 24 25 

Figure 2. SAW of figure 1 on which the decimation procedure described tn the lex1 has 
been applied. For simplicity the SAW has been drawn as a line of renormalized bonds. 

Considering the set of all N-step SAWS (with N large), the statistics of the Ising 
model on a SAW can thus be mapped on to that of a ID king model with random 
couplings. The geometrical randomness of the SAW is transformed into the randomness 
of the king couplings. These couplings will be K with a probability p > 0.5 (due to 
the result (2.8)). When they are  different from K, they can take on values K’ given by 
a distribution P ( K ’ ) .  This is a n  essential difference between the present case and that 
of a deterministic fractal where all renormalized couplings are the same. 

The length of the chain obtained by ‘decimating’ a SAW in the way described above 
will depend on the configuration of the SAW. Notice, however, that each bond with 
K’ # K has at least one neighbour with Ising coupling K. Let, for example, the bond 
k + k + 1 be given by K,,  and the bond k + 1 + k + 2 by K. Then we can define the 
following renormalization mapping 

exp(K”sksk+2+ C”) = 2 exp((K,sx+Ksk+2)sX+I) (2.10) 
I*+,=*,  

where C” is again a constant. We find 

(2.11) 

After performing this renormalization for all bonds with K ’ #  K, our chain will have 
just as many bonds as the original SAW 01 had links, i.e. La. On this new chain, king 
interactions will have strength K with probability q and strength K ” #  K with probabil- 
ity Q ( K ” )  where q and Q can be calculated in principle using (2.11). p and P ( K ’ ) .  
We remark that the mapping (2.9) and (2.10) is an exact one. 
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On the basis ofthe result (2.8) we can also conclude that on average our renormalized 
SAW will have half of the bonds of the original SAW and that therefore the average 
rescaling factor is 2'lD. 

We will now use the transformation of a correlation function under a Rc-mapping 
to determine In G, . The transformation law for an arbitrary correlation function G,, 
not necessarily that of the present problem, is given by 

~ 

G , = G ( l i - j l , ~ ) = b - ~ " G '  - b' /"w (2.12) Pi?, ) 
where we have assumed spatial isotropy and have explicitly denoted the dependence 
on the thermal scaling field U. In our case, for a transition at zero temperature, we 
have U = exp(-ZK). We assume that (2.12) holds in particular for the most probable 
value exp(ln G,)  of the correlation function in our model. 

The correlation function Gr in the renormalized SAW system can be calculated in 
a straightforward way. It is still given by (2.4), where now, however, 6 will be a random 
variable depending on the distribution of king interactions within the particular chain. 
On average we thus have 

InG:,=-N'(i ,j) /S=-N'(i ,j)/F (2.13) 

(assuming independence between length and correlation length of the renormalized 
chain, which of course is not completely valid; see also the end of section 3), where 
N'(i ,  j) is the number of bonds between i and j in the renormalized system, and c i s  
given by (Derrida and Hilhorst 1981) 

~ 

~ 

f=[qI ln tanhKI+( l -q)  I dK"Q(K")llntanhK"l I-' . (2.14) 

Now, using (2.8) and (2.2) in (2.13) we can write - 
In G;= - O . S m / c =  -0.5Ali-jlD/$= -(li-jl/&p)D (2.15) 

with 

(2.16) I -  l / D  tmP=(2A- 5 )  . 
Now we expect that Cm, has the following form: 

Cm, - exp(2uTK) - u - " ~  (2.17) 

which, using (2.12), finally gives 

m = - 2 x i i S + I n G '  (Iiijl, - bl+,) 

= -2x i iS-(l i-jl /&,p)D. 

In this way we find that, as for the SAW without bridges, 

li-jl 
= exp- (I) 

(2.18) 

(2.19) 

i.e. the correlation function decays as a stretched exponential. This is a remarkable 
result. It could be of quite some interest to investigate whether such a decay also occurs 
for the king model on other random fractals or whether it is a result of the essentially 
linear character of the SAW. 
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3. The thermal exponent vT 

We will now proceed to show that for K + m the decimation (2.9) can be worked out, 
leading to U,= 1/D. Therefore, consider first the case that in (2.9) sk = sI. Then for 
K +a, the right-hand side of (2.9) will be dominated by that configuration where all 
spins in the blob are equal to s k .  Let the number of bonds in the blob be m. In that 
case (2.9) reads 

(3.1) 

When sk = -sI and K + m, the right-hand side of (2.9) is dominated by those configur- 
ations in which one interface of minimal length is present inside the blob. Denote by 
no the number of bonds broken in such an interface, and by g the degeneracy of such 
a configuration (on any ZD lattice n o * 2 ) .  We get 
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exp(K'+ C ' )  = exp(mK)[l +O(exp(-K))]. 

exp( -K '+C' )=g  exp[(m -2n,)K][l+O(exp(-K))]. (3.2) 

exp(2K') =g-l  exp(2noK). (3.3) 

Taking (3.1) and (3.2) together we get to leading order 

Therefore asymptotically ( K  +a), K ' s  K .  Using this result in (2.11) and considering 
again the limit K + m, we get K"= K asymptotically. So at very low temperatures, 
our chain will from a course-grained point of view, look like a I D  chain with all degrees 
of freedom inside the blob frozen in. The randomness thus disappears out of the chain 
and from (2.14) we then get $=fexp(2K).  Then, trivially, from (2.16) and (2.17), it 
follows that vT= 1/D, as in the case of the SAW without bridges. This can be further 
understood by noticing that at very low temperatures the blob spins are frozen in, and 
only the I D  set of spins on links determines the behaviour. 

Thus as in the case of percolation, the statics are determined by the links. We will 
now proceed to discuss the dynamics of the chain where the reverse is true; it  is 
determined by the blobs. Finally we would like to remark that the results of the present 
section indicate that for K + m, the second equality of (2.13) involves no approximation 
because at these low temperatures .$is no longer random. Thus the stretched exponential 
decay becomes exact in that limit. 

4. Glauber dynamics of king model on a fractal 

We now turn to dynamics. The dynamics we will be interested in is Glauber dynamics 
(model A, Hohenberg and Halperin 1977). The case of an Ising model on a SAW 

without bridges can easily be solved as it is equivalent to the dynamics of the ID  Ising 
model which was solved in an important paper by Glauber (1963). The spin-spin 
time-dependent correlation function GG( f )  and the autocorrelation function C (  I )  which 
is defined as 

were found to decay exponentially with a relaxation time ~ - ( 1  -tanh2K)-'. For 
K + m we obtain 

(4.2) 4K r - e  . 
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This result should also hold for the SAW without bridges. In general the dynamic 
exponent z is related to the correlation length 5 via 

Combining (2.7) and (4.2) leads, for the SAW without bridges, to the result 

For the ID  king model one would have z =2. The difference is due to the stretched 
exponential decay of the static correlation functions for the king model on a SAW. 

When adding the bridges we can expect all kinds of effects. First of all it is known 
that for king models on such fractals as the Sierpinski gasket or the incipient infinite 
cluster at percolation, the scaling law (4.3) breaks down (Harris and Stinchcombe 
1986, Stinchcombe 1985, Henley 1985, Jain 1986a, b, Nunes de Silva and Lage 1987). 
To be more precise, z becomes a function of temperature: 

Secondly, the autocorrelation function C ( t )  was found by Jain (1988) to decrease as 
a stretched exponential for the case of an k ing  model on percolation clusters. Such 
stretched exponential decay seems to be ubiquitous, not only in systems witn quenched 
randomness (such as spin glasses or random field models) but even in the low- 
temperature region of the king model (Huse and Fisher 1987). In general Lifshitz 

e.g. Bray 1988). Numerical work, however, leads to exponents different from those 
predicted by simple arguments (see Jain 1988). The king model on a SAW has both 
random and fractal aspects, so we may also expect such decay here. Remark also that 
on a SAW with bridges both C(t) and T again become random variables. In discussions 
in the literature it is very seldom stated what is meant by 'the relaxation time'. As most 
results come from numerical simulations we will always refer to the most probable 
value T,,,~ which we will take to be related through equation (4.3) with the correlation 
length tmP. 

Let us discuss in more detail the arguments leading to (4.5) to see whether they 
are also valid for the SAW. For a system which only orders at zero temperature, at low 
temperatures the dynamics are determined by domain-wall diffusion (Cordery et a1 
1981). On a fractal this diffusion is sloweh down when the domain wall has to cross 
a blob. Consider again a SAW a. Let n-ib) be the maximum iength of the interface 
during a realization of the diffusion process across a blob b, then we can expect the 
diffusion along such a blob to take a time r O ( b )  given by 

TLl(b)= T,, exp[2Kn"(b)] (4.6) 
where 

In a given SAW a of size (e.g. end-to-end distance) R there will be several different 
relaxation times TO(b). Following Henley (1985) we define T , , , ~  as the typical (or most 
probable) value of the maximum relaxation time, i.e. 

7 - 5'. (4.3) 

z = 2 D = s  3 .  (4.4) 

(4.5) _-_ V I -  
L - L O R  I A l .  

sronmentr 11 ifQhitl 10h!21 .,rd tn n m A i r t  ..,,-h r+rntrhnA nrnnnnntirl ,4an.,s,c I r a n  ...e"..."..." I,"v, ...- .."-U FL"U.-L .)Y*L. IL...L>..*U '"&,"."..L.Y. U'.,*,' ,a-., 

is, for example, the time to cross one link. 

- 
rmp = exp(ln TL,) (4.7) 

with 

~,,,=m;x T"(b) (4.8) 

where the maximum is taken over all blobs in the SAW a. Now, of course, using (4.6) 
and the monotonicity of the In-function - 

~ n ~ ~ . ~ = ~ n r ~ , + 2 K ~ .  (4.9) 
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If we increase the size R of the system, it can be shown (Henley 1985) that due to the 
self-similar structure of the fractal, the maximum value of n ( b )  will increase logarithmi- 
cally with R. Thus we have 
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w = z ' l n  R+z" (R-") (4.10) 

where z' and z" are constants. This result should hold on any finitely ramified fractal 
and should therefore also hold for the SAW. Taking a sequence of  SAW^ with size 
~?=&,,~-exp ( i u , X )  as K+a j  we gei from (2.7) and (4.ij-(4.iOj 

In T , , , ~  = In &,JzoK + zl)  + C' (4.11) 

where C' is a constant, zo = 22' and zI = z"/uT. This is the result (4.5). 
Thus, on a certain SAW 01, both the autocorrelation function C ( t )  and the time rmp 

depend on the distribution of blobs within this SAW. As we are unable to say anything 
aboui ihe average vaiue of these quaniiiies anaiyiicaiiy we have resorted to a numericai 
calculation. 

5. Numerical results 

i n  our numericai work we have proceeded as foiiows. Firsi we have generaied a sei 
of SAW of N steps (we did our calculations for N = 26, 101 and 201). We then studied 
for each SAW the dynamics of the Ising model on that SAW, using a standard metropolis 
algorithm. After waiting for a suitable long equilibration time, we calculated the 
autocorrelation function C ( t ) .  This quantity was then averaged over the set of SAWS. 

The averaged quantity gives a good estimate of the most probable value Cmp(t) of 

temperature up to the relatively low temperature K = 2 (for the king model on 
percolation a similar study investigated only the region K S 1.5 (Jain 1986). As the 
relaxation times at these low temperatures grow to large values, the number of SAWS 

which could be studied at those temperatures was rather small (=~OSAWS of length 
201). At higher temperatures much larger numbers of SAWS were investigated (up to 
3000 SAWS). In order to compensate for the small number of SAWS at low temperatures, 
we have used a technique that takes a representative sample of SAWS. This technique 
is discussed in the appendix. 

Our results are the following. We find very clear evidence for a stretched exponential 
decay of the autocorrelation function 

this autocorre!ation function: We have investigated this quantity as a function of 

C"P( t )  =e-(or lo  (5.1) 

In figure 3 we present some typical results. We plot In(-In CmP(t)) versus In f. After 
a short cross-over time we see that the data fit the form (5.1) very well. From a fit of  
the data we can determine p and T. In figure 4 we plot our results for as a function 
of K .  As in the case of the Ising model on percolation (Jain 1988), the exponent p is 
temperature dependent. It may be possible that at low temperatures the value of p 
reaches a constant value of p =0.25. 

we now iurn our aiieniion io ihe iemperaiure dependerice of 1. C~iiibiiiiiig (4.3), 
(4.5) and (2.17) we get 

(5.2) 

.. , 

In T = A K 2 +  BK + C 
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Figure 3. Stretched exponential decay of the autocorelation function C"'( t )  For K = 0.80 
(top), K =1.25 (middle) and K =  1.55 (bottom). The fitted values For the slopes 0 are 
p = 0.40, p = 0.30 and 0 = 0.27 respectively. 

I . . "  
O 0.4 0.8 1 . 2  1 .6  2 

K 

Figure 4. The exponent p as a function of K. We have used the symbols +, * and 0 for 
SAW lengths N = 26, 101 and 201 respectively. 

12 I 

k 

Figure 5. Plat of In T against K. The symbols have the same meaning as in figure 4. The 
fitted line has slope R=8.7  and ordinate C 3 -6.1. The broken line is the parabola with 
A = l . l .  8=6.1 and C=-4.7 (see table I ) .  
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with C a constant and 

M Aertsens and C Vanderzande 

A = 2uTzu B = z u l n  5 u + 2 u T z t .  (5 .3)  

Dynamical scaling would imply A = zu= 0 and B = 2uTz. Figure 5 shows our data for 
In r versus K.  If they are fitted to the form (5.2) with A=O (i.e. assuming dynamical 
scaling) we get the results shown on the left in table 1. If we use the value 8 ~ 8 . 7  
(*0.2) (coming from taking our data for all values of N ) ,  uT=0.75 implies z =  5.8, a 
value which seems unusually large and indicates a possible breakdown of scaling. 

Table 1. Fitting results for In 7 to the formulae (5.2). The numbers Band C on the left-hand 
side of the table are fitted with A =O. 

B C SAW length A B C 

9.1-tO.2 -5.4-tO.4 N = 2 6  0.1-tl.O 7.6*0.1 -5.5+0.6 
8.8-tO.2 -6.210.2 N=101 1.310.7 5 .5 - to .5  -4.3-tO.4 
9.2-tO.Z -6.1*0.4 N=2Ol 2 .01  1.5 4.6+2.3 -3.750.8 
8.7k0.2 -6.1-tO.2 all N 1.1-t l . l  6.1-tl.2 -4.7-tO.6 

If we let the parameter A in (5.2) free, we get the best fits of A, B and C shown 
on the right of table 1.  We see that the coefficient A is small and that the value zero 
cannot be completely ruled out. The value of A, however, also increases with increasing 
system size. On the basis of these results we are led to conclude that there is a weak 
breakdown of scaling in the king model on a SAW. This is indeed what would be 
predicted for any fractal from the arguments in section 4. 

6. Conclusions 

In the present paper we have investigated the properties of the Ising model on a SAW. 

We have found that both the static correlation function and the autocorrelation function 
decay as a stretched exponential. In the latter case this conclusion is based only on 
numerical evidence, but in the former case it comes from analytical reasoning which 
in the zero temperature limit becomes exact. Our result is to the best of our knowledge 
the first such exact result for a random fractal. This result could be achieved thanks 
to the essentially linear structure of the SAW, which completely determines its static 
behaviour. We could also show, using analytical arguments based on a renormalization 
mapping, that the thermal exponent uT describing the most probable value of the 
correlation function, equals 1/ D. Of course this does not rule out the possibility that 
the average (or other moments of) correlation length needs another thermal exponent. 

We have also found numerical evidence for a breakdown of dynamical scaling. 
The interesting dynamical properties are mainly caused by the blobs occurring within 
the SAW. 

Other interesting phenomena may occur when we include a magnetic field. In that 
case our renormalization transformation maps the king model on a SAW into a ID  

chain with random interactions and random fields. The dynamics of such a chain can 
be related to Sinai-diffusion (Stella and Vanderzande 1991) and can therefore be of 
a completely new type for spin systems. 
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Appendix: Generation of the SAWS 

We wish to calculate the value of some physical quantity A, averaged over all self- 
avoiding random walks (SAW) of length N. If cN is the number of all SAWS of length 
N, it is straightforward to choose at random M SAWS out of the cN SAWS. Then one 
calculates the quantity A for each SAW (I and we call the result A, ((I = 1,.  . . , M). 
The average value ( A )  is then estimated by 

1 M  

N Y = l  
(A )= -  1 A,. 

The probability of choosing a certain SAW a (a = 1,.  . . , c N )  is pa = l / cN.  The problem 
is how to choose the  SAW^ at random if you do  not have a list of all cN SAWS of 
length N. 

and Rosenbluth (1955) or its extension (Meirovitch 1983). Using this method, some 
 SAW^ are generated more than others. A weighting function W, is introduced such 
that all configurations are counted equally. Thus if r,, is the probability that SAW (I is 
generated by the Rosenbluth method, 

A rnlntinn ir tn ormerite ~ A U I -  ~ r m r r i i n o  tn the methnrl n m n n e d  hv Rnwnhhith '. ..-.. ." .I _.._.I._ I_.." I---.-... I- ... I ..._I..__ ~.-~-"--  -, .."I -..-. 

where C is a constant. 

approximated by 
Generating M  SAW^ according to the Rosenbluth method, the average value (A )  is 

Estimating ( A )  this way is referred to in this appendix as (I). This method is not very 
effective if the time to calculate A, is one or more orders of magnitude larger than 
the time to generate the SAW a. Indeed, according to the definition of r,, the Rosenbluth 
method generates mostly SAWS with large re. According to (A.21, the weight factor W, 
of such  SAW^ is small. Thus the contribution of W,A, to the value (A )  is also relatively 
small. Especially for large N, when the weight factors differ by several orders of 
magnitude, it remains possible that for instance the fiftieth generated SAW has a higher 
weight W,, than the sum of the 49 previous values of W, (see figure 6) .  Hence in 
order to have a reliable stimate of ( A ) ,  one needs to compute A, on a large number 
of SAWS a. 

In order to have a reliable estimate of ( A )  by calculating A, for a relatively low 
number of  SAW^, we first generaied a large number of SAWS These SAWS were distributed 
in classes according to their weight W,. The quantity A, was calculated only for some 
 SAW^. These were selected in such a way that the measured distribution of weights W. 
was always approximated as closely as possible. 
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Figure 6. The Rosenbluth method is used to generate 300 000 SAWS of length N = 101. The 
SAWS are distributed in classes, such that SAWS with the same integer for log W, belong 
to the same class. The broken curve gives the number of SAWS contained in every class. 
The sum of the weights W, of all the SAW- in a class is given by the broken curve. One 
remarks that although few SAWS are generated in the classes with large log W, there classes 
contain the majority of the total weight. If the SAWS are selected according LO ( I I ) ,  only 
120 SAWS are accepted. These are distributed according to the full curve. The coincidence 
of the dotted and the full curve confirm formulae (A.2) and justify method (11). For 
the acceptance/rejectance of the SAWS, we have used Wk.,=O.l x 10'' [ W , . , = 4 ~ 3 ~ ' =  
0.7 x 1 0 ~ 8 ) .  

In order also to avoid the problem that most generated SAWS have a low weight 
W,, we used an acceptance-rejection procedure: 

(i) Generate a SAW a according to the Rosenbluth procedure and calculate its 
weight We. 

(ii) Generate a random number R (Os R s 1) and call W,,, the maximum value 
of W, over all cN SAWS of length N .  

(iii) (a) If R s W,/ W,,,: the SAW is accepted and A, is calculated. (b) Else if 
R 3 We/ W,,,,,: the SAW is not accepted. 

This procedure is repeated for a sufficiently large number of SAWS. Because SAWS 

are generated according to a density function r, ,  taking into account (A.2), the accepted 
SAWS have on average the density function p a .  Thus if N SAWS are accepted, the value 
(A)  is estimated by (A.3). This method is referred to as (11). 

It is obvious that in (11) more computer time is needed to generate an accepted 
SAW than in (I). So if the time to calculate A, is smaller than the time to generate 
SAW a, method ( I )  seems the best choice. 

For large cN the probability of choosing a SAW with a weight near W,,, is very 
small. One has to generate a very large number of SAWS in order to have one accepted. 
This is avoided if we replace in (11) W,,, by a smaller number Wkax. If all the 
generated  SAW^ have a weight W, s Wk,,, the accepted SAWS also have in mean the 
density function p m  and the computer time used to generate the same number of SAWS 

is reduced by the factor ( W g , /  WmaX). If, however, a SAW with a weight factor 
W, > W L  is generated, the calculations must be restarted. 

For very large N, most generated SAWS are rejected and thus method (11) is not 
very effective either. A good alternative might be to use the Beretti-Sokal method 
(Beretti and Sokal 1985) or the Pivot algorithm (Madras and Sokal 1988, La1 1969, 
Kremer and Binder 1988). 
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We generated SAWS of length N = 26, 101 and 201. For N = 201 the calculations 
at different temperatures were executed on the same 44  SAW^, generated according to 
method (11). For N =26 and N =  101 we generated the  SAW^ during the calculations. 
Both methods (I) and (11) are used for N = 26 and N = 101. 
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